Gaussian kernel GARCH models
نویسندگان
چکیده
This paper aims to investigate a Bayesian sampling approach to parameter estimation in the GARCH model with an unknown conditional error density, which we approximate by a mixture of Gaussian densities centered at individual errors and scaled by a common standard deviation. This mixture density has the form of a kernel density estimator of the errors with its bandwidth being the standard deviation. This study is motivated by the lack of robustness in GARCH models with a parametric assumption for the error density when used for error– density based inference such as value–at–risk (VaR) estimation. A contribution of the paper is to construct the likelihood and posterior of the model and bandwidth parameters under the kernel–form error density, and to derive the one–step–ahead posterior predictive density of asset returns. We also investigate the use and benefit of localized bandwidths in the kernel–form error density. A Monte Carlo simulation study reveals that the robustness of the kernel–form error density compensates for the loss of accuracy when using this density. Applying this GARCH model to daily return series of 42 assets in stock, commodity and currency markets, we find that this GARCH model is favored against the GARCH model with a skewed Student t error density for all stock indices, two out of 11 currencies and nearly half of the commodities. This provides an empirical justification for the value of the proposed GARCH model.
منابع مشابه
Bayesian Semiparametric GARCH Models
This paper aims to investigate a Bayesian sampling approach to parameter estimation in the semiparametric GARCH model with an unknown conditional error density, which we approximate by a mixture of Gaussian densities centered at individual errors and scaled by a common standard deviation. This mixture density has the form of a kernel density estimator of the errors with its bandwidth being the ...
متن کاملApplying GARCH-EVT-Copula Models for Portfolio Value-at-Risk on G7 Currency Markets
This research estimates portfolio VaR (Value-at-Risk) on G7 exchange rates using a GJR-GARCH-EVT (extreme value theory)-Copula based approach. We first extracts the filtered residuals from each return series via an asymmetric GJR-GARCH model, then constructs the semi-parametric empirical marginal cumulative distribution function (CDF) of each asset using a Gaussian kernel estimate for the inter...
متن کاملHigh Moment Partial Sum Processes of Residuals in Garch Models
In this paper we construct high moment partial sum processes based on residuals of a GARCH model when the mean is known to be 0. We consider partial sums of kth powers of residuals, CUSUM processes and self-normalized partial sum processes. The kth power partial sum process converges to a Brownian process plus a correction term, where the correction term depends on the kth moment μk of the inno...
متن کاملSupergaussian Garch Models
In this paper, we introduce supergaussian generalized autoregressive conditional heteroscedasticity (GARCH) models for speech signals in the short-time Fourier transform (STFT) domain. We address the problem of speech enhancement, and show that estimating the variances of the STFT expansion coefficients based on GARCH models yields higher speech quality than by using the decision-directed metho...
متن کاملUtilizing Kernel Adaptive Filters for Speech Enhancement within the ALE Framework
Performance of the linear models, widely used within the framework of adaptive line enhancement (ALE), deteriorates dramatically in the presence of non-Gaussian noises. On the other hand, adaptive implementation of nonlinear models, e.g. the Volterra filters, suffers from the severe problems of large number of parameters and slow convergence. Nonetheless, kernel methods are emerging solutions t...
متن کامل